Ensemble Verification

Yuejian Zhu

Environmental Modeling Center NOAA/NWS/NCEP

Acknowledgements: Zoltan Toth *EMC*

Outlines

Climatological Data ☐ Verify Analysis (proxy truth) ☐ RMS and Spread ☐ Mean Error and Absolute Error ☐ Histogram and Outlier ☐ RPS and RPSS ☐ CRPS and CRPSS ☐ BSS (Resolution and Reliability) ☐ ROC (Hit Rate and False Alarm Rate) ☐ Economic Value (cost-loss analysis)

Climatological Data

- NCEP/NCAR 40 years (1958-1997) reanalysis
- Monthly Sampling
 - For example: 40*30=1200
- 10 equally-a-likely, based on sampling
- Projected to verify date
- All forecast skills will base on 10 equally-alikely climatological bins.

Verify Analysis (proxy truth)

- All following deterministic and probabilistic verification are based on 2.5*2.5 grid forecast, analysis and climatology in globally
- NCEP best analysis (GSI) is our best reference (proxy truth) to apply all NCEP forecast verifications.
- Other model forecast verification is using their own available analysis (proxy truth)
- For jointed ensemble (or multi-model ensemble), it is using NCEP analysis (as truth) in practice.

Northern Hemisphere 2 Meter Temp. Ensemble Mean Error and Ensemble Abs. Error Average For 20061201 — 20070222

Prob. Evaluation (simple measurement)

1. Talagrand Distribution (histogram distribution):
Sorting forecast in order, to check where the analysis is falling *Reliability measurement, system bias detected*.

positive/negative biased for forecasting model, example of these forecasts --> cold bias, assume analysis is bias-free (perfect). Common -"U" sharp

Northern Hemisphere 500hPa Height Histogram Distribution Average For 20061201 — 20070222

Prob. Evaluation (simple measurement)

- 1. Talagrand distribution (continue).
 - . Outlier evolution by different leading time
 - .. Adding up two outliers subtract the average.
 - ... Ideal forecasts will have zero outliers.

Prob. Evaluation (simple measurement)

Outlier --> diagnostic

forecasts .vs. next forecasts (f+24hrs valid at same time) assume forecasting model is perfect, f+24. perfect forecast system will expect the outliers are zero.

Based on climatological equally likely bins (for example. 5 bins)

For verifying multi-category probability forecasts.

measure both reliability and resolution.

1. Ranked (ordered) probability score (RPS) and RPSS RPSS=(RPSf - RPSc)/(1 - RPSc)

Northern Hemisphere 500 mb Height Ranked Probability Skill Scores (RPSS) Yearly Average

Continuous Rank Probability Score

$$CRPS = \int_{-\infty}^{+\infty} [F(x) - H(x - x_0)]^2 dx$$

$$CRPSS = \frac{CRPS_c - CRPS_f}{CRPS_c}$$

Order of 10 ensemble members (p01, p02,...,p10)

2. Brier Score(BS, non-ranked), Brier Skill Score(BSS). from two categories to multi-categories/probabilistic ----measure both reliability and resolution

Northern Hemisphere 500 mb Height Brier Skill Scores (BSS) Average For 20020101 - 20020131

3. Decomposition of Brier Score:

consider <u>sub-sample</u> and <u>overall-sample</u>

reliability, resolution and uncertainty.

for reliability: 0 is perfectly reliable

for resolution: 0 is no resolution (= climatology)

when resolution = reliability \rightarrow no skill

example of global ensemble:

Northern Hemisphere 500 mb Height Brier Skill Scores (BSS) Average For 20020101 - 20020131

4. Reliability and possible calibration (remove bias): For period precipitation evaluation

4. Reliability and possible probabilistic calibration: re-label fcst prob by obs frequency associated with fcst

Prob. Evaluation (cost-loss analysis)

Based on hit rate (HR) and false alarm (FA) rate.

1. Relative Operating Characteristics (ROC) area - Appl. of signal detection theory for measuring discrimination between two alternative outcome.

ROCarea = Intergrated area * 2 (0-1 normality)

ROC (Relative Operating Characteristics) curve for a 10-member T62 ensemble of forecasts and for T126 and T62 control forecasts for the 500 hPa height, **NH extratropics**, March-May 1997. The closer a curve is to the upper left hand comer, the more ability the forecasting system has in delineating between cases when a certain event (in this case, the occurence of one of 10 climatologically equally likely bins) did or did not occur.

Relative Operating Characteristics area (ROC area)

USER NEEDS – PROBABILISTIC FORECAST INFORMATION FOR MAXIMUM ECONOMIC BENEFIT

ECONOMIC VALUE OF FORECASTS

Given a particular forecast, a user either does or does not take action (eg, protects its crop against frost) Mylne & Harrison, 1999

FORECAST

OBSERVATION		YES	NO			
	YES	H(its) <i>Mitigated Loss</i>	M(isses) <i>Loss</i>			
	NO	F(alse alarms) <i>Cost</i>	C(orrect rejections			

$$Mean\ Expense_{fc} = hML + mL + fC$$

$$Value = \frac{ME_{cl} - ME_{fc}}{ME_{cl} - ME_{perf}}$$

$$ME_{cl} = min[oL, oML + (1-o)C]$$

o=climatological frequency

Optimum decision criterion for user action: P(weather event)=C/L (Murphy 1977)

Prob. Evaluation (cost-loss analysis)

2. Economic Value (EV) of forecasts.

Given a particular forecast, a user either does or does not take action

Prob. Evaluation (cost-loss analysis)
Based on hit rate (HR) and false alarm (FA) analysis
.. Economic Value (EV) of forecasts

Decision Theory Example

Forecast?

Critical Event: sfc winds > 50kt

Cost (of protecting): \$150K

Loss (if damage): \$1M

		YES	NO				
<u>;</u>	YES	Hit	Miss				
.vec		\$150K	\$1000K				
Observed?		False	Correct				
	NO	Alarm	Rejection				
		\$150K	\$0K				

	Deterministic	Observation		Probabilistic	Cost (\$K) by Threshold for Protective Acti			ion		
Case	Forecast (kt)	(kt)	Cost (\$K)	Forecast	0%	20%	40%	60%	80%	100%
1	65	54	150	42%	150	150	150	1000	1000	1000
2	58	63	150	71%	150	150	150	150	1000	1000
3	73	57	150	95%	150	150	150	150	150	1000
4	55	37	150	13%	150	0	0	0	0	0
5	39	31	0	3%	150	0	0	0	0	0
6	31	55	1000	36%	150	150	1000	1000	1000	1000
7	62	71	150	85%	150	150	150	150	150	1000
8	53	42	150	22%	150	150	0	0	0	0
9	21	27	0	51%	150	150	150	0	0	0
10	52	39	150	77%	150	150	150	150	0	0
		Total Cost:	\$ 2,050		\$1,500	\$1,200	\$1,900	\$2,600	\$3,300	\$5,000

Optimal Threshold = 15%